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Summary of Objectives and Approach: 

Resonant Ultrasound Spectroscopy (RUS) has been used successfully to determine the elastic 
properties of single crystals and homogeneous materials. Our objective was to develop RUS to 
measure the average elastic properties of inhomogeneous materials, such as composites, 
concrete, and rocks. Our goal was to proscribe the conditions necessary for the successful use of 
RUS on inhomogeneous materials by studying the effects of size, shape, aspect ratio, and sample 
Q on the accuracy of RUS measurements. We focused on rock samples, believing that the 
strategy for establishing the applicability of RUS to rocks should generalize to other 
inhomogeneous materials. Rocks are consolidated materials, not easily machined, often 
anisotropic, and having very low quality factor, Q (or high attenuation). 

We have attempted to answer the following question. Under what conditions is RUS a useful 
tool for determining the moduli of macroscopic (a few centimeters on a side), inhomogeneous 
samples? We concentrated on identifying a sample geometry that will maximize success with 
RUS. The work consisted of numerical modeling of sample resonances under varying 
conditions, and empirical testing of rock samples. Numerical modeling was based on the 
Visscher et al. [1991] variational technique, and standard perturbation techniques. Some 
software was developed at UNR, and some was provided by Dynamic Resonance Systems 
(DRS), a commercial provider of RUS measurement systems. Empirical testing was performed 
using a DRS system. The experimental sample shapes are rectangular parallelepipeds. 
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Summary of Major Findings: 

1. The RUS analysis technique assumes sample homogeneity. By a back-of-the-envelope 
argument, we claim that inhomogeneous samples will look homogeneous to RUS if the 
scale of the inhomogeneity is no more than 1/5 the smallest sample dimension. Thus 
average moduli can be accurately determined when the scale of sample inhomogeneity is 
small compared to the sample scale. Empirical testing on inhomogeneous granite 
samples of various sizes confirmed this concept. 

2. The RUS analysis technique assumes a perfect parallelepiped sample. Using perturbation 
theory, we argue that for inhomogeneous samples, a nick in a corner of the sample, or 
two sample sides that are not perfectly parallel, will contribute negligibly to error in the 
measured moduli. Empirical results from crudely cut samples and samples cut precisely 
are essentially indistinguishable for the same rock type. Small sample shape 
imperfections did not cause large errors in fits for moduli. 

3. Inhomogeneous samples have high attenuation, or low quality factor Q. Low Q causes 
resonance peaks to be short and broad. This means that resonance peaks may overlap, 
and may be difficult to pick out from background noise (especially as the frequency 
increases). To maximize the information gained from a minimum number of peaks, we 
modified sample aspect ratio. We modeled the spread in the first 14 resonance 
frequencies as a function of aspect ratio, and the contribution of the two isotropic moduli 
to the first resonances as a function of aspect ratio. In both cases, we found that optimum 
results can be obtained with sample aspect ratios of 4/1 (largest to smallest side). 
Empirical testing of black gabbro samples with varying aspect ratios, show that the error 
in the fits for moduli decreases as the aspect ratio is increased. 

4. In theory, the RUS technique should be capable of identifying anisotropy in an 
experimental sample. In practice, inhomogeneity and compensations made to deal with 
inhomogeneity may mask clues that a sample is anisotropic. In other words, if we 
assume isotropy for an anisotropic sample, the RUS fitting errors should be large and 
obvious for a perfect sample, but may not be for inhomogeneous samples. We modeled 
the error induced in an isotropic fit, as a function of the strength of hexagonal anisotropy. 
We conclude that anisotropy will be very difficult to detect in high aspect ratio samples. 
In contrast, anisotropy in symmetric samples will cause degenerate resonances to split, 
and should be clearly distinguishable. However, low Q may cause these split peaks to 
overlap, and thus make the distinction impossible. 

Summary of Conclusions: 

Numerical modeling and empirical testing indicate that RUS is a viable technique for 
characterizing the average isotropic elastic moduli of inhomogeneous materials, although larger 
RMS errors can be expected than for single crystal materials. Success with RUS can be 
optimized by ensuring that the sample size is large compared to the scale of inhomogeneity, and 
by using a high aspect ratio parallelepiped sample (ratio of largest side to smallest side 
approximately 4). Hexagonal anisotropy and lower symmetries may be difficult to detect, and 
even harder to quantify, except for very low attenuation materials. 



Detailed Report: 

See attached Master's Thesis, Determination of Elastic Moduli of Rock Samples Using Resonant 
Ultrasound Spectroscopy, by TJ Ulrich, Department of Physics, University of Nevada, Reno, 
December 2000. 

Navy Relevance: 

The development of RUS as a tool to understand thermoacoustic properties of crystalline 
materials is supported primarily by the Physical Acoustics Program at ONR. Our goal is to 
develop RUS as a tool to understand the elastic and acoustic properties of materials that 
constitute physical infrastructure, such as concrete, rock, laminates, and polymer composites. 
This corresponds to ONR's Physical Acoustics Program objective of measuring and correlating 
physical properties of materials using acoustic methods. 
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During the past year, we performed a feasibility study showing that with the proper choice of 
sample geometry, RUS can be used to measure elastic moduli of inhomogeneous materials 
quickly and accurately.   The RUS measurement system can be used to monitor the elastic state 
of an inhomogeneous sample. In the next year, we have two goals: 1) to broaden the range of 
inhomogeneous samples to which RUS can be applied (we are particularly interested in 
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temperature and vapor pressure). An experimental system will be developed to allow control of 
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mechanism causing the nonlinear elastic behavior displayed by rocks and concrete. 
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ABSTRACT 

Resonant Ultrasound Spectroscopy (RUS) is a method whereby the elastic 

tensor of a sample is extracted from measured resonance frequencies. RUS has been 

used successfully to determine the elastic properties of single crystals and homoge- 

neous samples. In this thesis, I study the applicability of RUS to macroscopic samples 

of inhomogeneous materials, specifically rock. I have paid particular attention to sev- 

eral issues: appropriate scale of inhomogeneity, sample shape imprecision, effects of 

low Q, extraction of sufficient information on multiple moduli, and recognition of 

anisotropy. Using modeling and empirical testing, I have established bounds on the 

applicability of RUS to inhomogeneous materials. 



Ill 

"Six months in the lab can save you a day in the library." 

- old adage 



IV 

Table of Contents 

1   INTRODUCTION 2 

2 VARIATIONAL CALCULATION OF ELASTIC RESONANCES AND 

LEVENBERG-MARQUARDT INVERSION 6 

2.1 Variational Calculation of Elastic Resonances in One Dimension  ... 7 

2.2 Three Dimensional Model  13 

2.3 Levenberg-Marquardt Minimization  17 

3 MODELING AND EXPERIMENTAL DEVELOPMENT 20 

3.1 Free boundaries  22 

3.2 Inhomogeneity  23 

3.3 Sample geometry, the figure of the sample  24 

3.4 Distinct resonance peaks  25 

3.5 en dependence     26 

3.6 Anisotropy  30 

4 EXPERIMENTAL RESULTS AND CONCLUSIONS 37 



4.1 Results  37 

4.2 Conclusions  41 

A PERTURBATION THEORY 43 

B CASE STUDY 46 

REFERENCES 61 



VI 

List of Figures 

2.1 Example of a vibrating string with free ends  9 

2.2 Comparison of one dimensional mode shapes  12 

2.3 Examples of three dimensional mode shapes  14 

2.4 Comparison of numerical method for number of frequencies predicted 

by N = 10 and TV = 12  16 

3.1 Block diagram of experimental set-up  21 

3.2 Frequency shift as a function of the perturbation placement  25 

3.3 Resonance frequencies as a function of aspect ratio  27 

3.4 en dependence as a function of aspect ratio  29 

3.5 Frequency error vs. e for c/a =-4, -2, 1, 2, 3, 4  33 

3.6 Quality of fit for c/a=4, hexagonal symmetry  34 

3.7 Quality of fit for c/a=2, hexagonal symmetry.  35 

3.8 Quality of fit for c/a=4, fixed e, varying number of frequencies fit. . . 35 

4.1    Pictoral representation of sample set 1  39 

B.l   Example of a spectrum for a stainless steel  47 



Vll 

B.2   Example of a spectrum for Berea sandstone  48 

B.3   Input file for sample BG-4, forward calculation  50 

B.4   Initial scan of sample BG-4  51 

B.5   Scan of region A for sample BG-4  52 

B.6   Artifact scan of sample BG-4, region E  53 

B.7   Sample BG-4, scan of region B  54 

B.8   Sample BG-4, scan of region C  55 

B.9   Sample BG-4, scan of region D  56 

B.10 Sample BG-4, scan of region F  57 

B.ll Sample BG-4, scan of region G  58 

B.12 Input file for sample BG-4  58 

B.13 Final output file for sample BG-4  60 



Vlll 

List of Tables 

1.1    Relationships for engineering elastic constants in isotropic materials  .       5 

4.1 Sample Set 1          38 

4.2 Sample Set 2          39 



Chapter 1 

INTRODUCTION 

Resonant ultrasound spectroscopy (RUS) is a highly sensitive technique for 

determining the elastic tensor and related properties of single crystal samples [1]. The 

first ten or more resonance frequencies of a sample with free boundaries are measured. 

These resonance frequencies are the input to an iterative inversion algorithm that 

finds the best match between the data and a set of resonance frequencies generated 

from a model. The variational parameters in the inversion are the components of 

the elastic tensor describing the sample. Thus RUS is a method whereby the elastic 

tensor of a sample is extracted from measured resonance frequencies. For example, 

RUS has been used to determine the elastic tensor and crystallographic orientation of 

tantalum [2], to measure the elastic properties and infer thermodynamic properties of 

CaO at temperatures representative of the earth's interior [3], and to study the elastic 

constants, microstructure, and superconducting phase transition in L^-iSr^CuC^ [4]. 

The elastic tensor of single crystals and minerals reflects the angstrom scale structure 



of these systems. From knowledge of the elastic tensor, the symmetry of a crystal and 

features of the phonon and electron spectra can be deduced. When RUS is conducted 

in a temperature reservoir that can be controlled, it is possible to develop a complete 

thermodynamic description of the sample. 

The success of RUS derives from the sensitivity of the resonant modes of a sys- 

tem to the elastic structure of the system [5]. The elastic structure affecting resonance 

frequencies has three components: the geometry of the sample; the homogeneity of 

the sample; and the elastic tensor of the sample, including symmetry and orientation. 

Given a perfectly homogeneous sample with a precise geometry, the elastic tensor can 

be derived to a very high degree of accuracy. 

In this paper, we explore the limits of applicability of RUS to macroscopic, in- 

homogeneous samples of rock. Rocks are consolidated materials, typically assembled 

from aggregates of mesoscopic sized pieces of atomically uniform materials. They are 

not easily machined to precise shapes. Their microscopic symmetry is homogenized 

by the process of their macroscopic assembly. However, they may have macroscopic 

symmetry of great importance. My goal is to proscribe the conditions necessary for 

the successful use of RUS on inhomogeneous materials. These conditions include con- 

straints on sample preparation and contraints on the body of reasonable questions 

that can be answered with RUS. 

Historically, the elastic moduli of macroscopic inhomogeneous materials have 

been measured using mechanical testing [6] or ultrasonic time-of-flight techniques [7]. 

Mechanical testing, wherein the stress-strain relationship is measured between am- 



bient conditions and failure, is a widely accepted method for measuring material 

strength and toughness. A modulus is determined from the stress-strain slope at 

low strain. The greatest disadvantage to using mechanical testing to determine lin- 

ear elastic moduli is that the sample is destroyed or altered as a result of the test. 

Thus results cannot be confirmed for a given sample, and only one elastic constant 

can be determined for each sample. Another disadvantage is that mechanical tests 

are inherently high amplitude tests. Our primary interest is in dynamic moduli that 

are directly related to acoustic velocities. In general, dynamic moduli measured by 

time-of-flight techniques are higher than moduli infered from mechanical testing. 

Time-of-flight determinations of elastic constants are actually acoustic velocity 

measurements. The time delay t of an ultrasonic pulse across the sample is measured. 

Given the length / and density p of the sample, the wave velocities and elastic con- 

stants can be determined from v = l/t, cn = pv\, and c44 = pv\, where vc and vs 

are the compressional and shear wave velocities (Table 1.1 provides a relationship 

between cn, c44 and the standard engineering elastic constants). This technique is 

path dependent and therefore requires multiple measurements in different locations 

and directions to determine an average velocity if the material is inhomogeneous. To 

determine both compressional and shear velocities, transducers that produce purely 

compressional and purely shear plane waves are desirable. Finally, the transducers 

must be bonded to the sample reproducibly for all measurements. 

Resonant ultrasound spectroscopy is a potential alternative technique for de- 

termining elastic moduli of inhomogeneous materials.  Typically, a rectangular par- 
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allelepiped sample is placed between two piezoelectric transducers, a source and a 

detector. The sample is driven at constant voltage as the frequency is swept through 

multiple resonances. The measured resonance frequencies are the input to an iter- 

ative inversion algorithm that finds the best match between the data and a set of 

resonances generated from a model. The experimental component of RUS is straight- 

forward. The analysis component is sophisticated, but can be performed more and 

more rapidly as computational power increases. Chapter 2 will examine the numerical 

process involved in the RUS analysis. In Chap. 3, several issues pertaining to using 

RUS on inhomogeneous samples are discussed. In most cases, numerical modeling 

was used to explore ways to optimize experimental chances for success. In Chap. 4, 

the results of RUS experiments on a variety of samples are displayed and discussed 

as well as a summary of our findings, describing the bounds on RUS applicability to 

inhomogeneous materials found empirically and through modeling. 



Chapter 2 

VARIATIONAL CALCULATION OF 

ELASTIC RESONANCES AND 

LEVENBERG-MARQUARDT INVERSION 

The Resonant Ultrasound Spectroscopy (RUS) technique has two components: 

the experiment to collect resonance frequencies, and the analysis to extract the elastic 

moduli. The bulk of this thesis is a description of the experimental application of 

RUS, and the numerical modeling used to optimize the experimental results. In 

this chapter the mathematical and theoretical basis of the analysis component will be 

described for two physical systems: a one dimensional string, and a three dimensional 

elastic solid. The example in one dimension is used to illustrate the principles of the 

three dimensional calculation. 

While elastic resonances in one dimension are relatively easy to calculate ana- 



lytically, the resonances of an arbitrary three dimensional object with arbitrary sym- 

metry are extremely difficult to calculate. The analysis built into the RUS technique 

uses a variational scheme to calculate approximate resonances [8]. This approximation 

technique decreases the calculation time considerably and can be applied to arbitrary 

shape and symmetry in a straightforward manner. In addition, extremely accurate 

results can be obtained when an appropriate number of basis functions is employed. 

2.1    Variational Calculation of Elastic Resonances 

in One Dimension 

Hamilton's variational principle is used to calculate the resonance frequencies of an 

arbitrary body. We illustrate this calculation in one dimension. The Lagrangian of a 

string of length I is 

L= f(T- U) dx , (2.1) 
'i 

where T is the kinetic energy and U is the potential energy per unit length of the 

string. In frequency space 

T = \pJ>u2
t (2.2) 

and 

"-Mi)'- (23) 
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where p is the mass density, r is the string tension, u> is the frequency of motion, and 

u is the transverse displacement at x. Thus the Lagrangian is 

■/ 

1     ,   ,      1   (du 
dx (2.4) 

Varying our original Lagrangian by 8L, Eq. (2.4) becomes 

L + 6L = f 
'l     L 

1       2 / c>2 1     fd{u + SuY 
9x 

rfx (2.5) 

To first order in the variational parameter du, 

6L= j 
'i 

Integrating by parts we find 

6L =     dx 

pu  u6u - r   — 
#M\ /d<5ux 

dx I \ dx 
dx . (2.6) 

2 9  / duN 

PW  U-^ Vox-, 
6u- r(^)Su (2.7) 

To minimize the Lagrangian we set 6L = 0.   For arbitrary 6u, Hamilton's 

principle is satisfied when two conditions are met: 

First Condition: 

du 
dx 

0 (2.8) 

Second Condition: 

2 d2u     n (2.9) 

The first condition is equivalent to the free boundary condition at each end of 

the string. The second is the one dimensional wave equation. Thus the displacement 

function u(x) that minimizes the Lagrangian, solves the elastic wave equation for a 

string with free ends, as illustrated in Fig. 2.1. 



Figure 2.1: Example of string with free ends. The ends are free to slide along the guide 

bars without friction. 
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Applying the results of the previous paragraph, we choose a convenient form for 

u(x) that includes variational parameters that will allow us to minimize L. Following 

Visscher et al. [9] we choose u(x) to be a polynomial, 

N 

n=0 

(2.10) 

Substituting u(x) in Eq. (2.4) we have 

r       [l N N 1     N       dxn   N 

L=     dx   -pcu2 Yl a"x" E a™*m ~ 9r E a" -ZT E a™ 
•; ll n=0 m=0 Z     n=0 UX   m=0 

(2.11) 

Simplifying, 
N 

E 
n.,m.=0 

N i iV 1 

L = — (JJ        2L     CLnamEnm — —     2_j     0"nO>mnmTnm , (2.12) 

n,m=0 

where 

Er, 

pin+m+l 

n + m + V 
(2.13) 

and 

n in Tln,Z i    for n & m 7^ 0 n.+m—1 ' (2.14) 

0 for n or m = 0 

To minimize the Lagrangian, we set dL/daj = 0.   This leads to N linear 

equations that can be expressed in matrix form, 

(w2E-r)a = 0. (2.15) 

We now have an eigenvector/eigenvalue problem. Setting the determinant |w2E—T| = 

0, we find N+l values of a;2. For each frequency eigenvalue u2, there is an eigenvector 

a that contains the values of the coefficients of the displacement polynomial u(x). 

As a concrete example, take N — 2.   Then u(x) = CLQ + a\x + CL2X2.   Let 

/ = p = r = 1 for simplicity. Then the eigenvalue/eigenvector equation reduces to 
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(tf 

üü
2
E - r = 

1 / ,2 1 / .2      \ 

X w-i \^-i 
\  1 , ,2      1 , ,2       i       1 , ,2       4   / 

Setting |o;2E - T| = 0. we find the eigenvalue/eigenvector pairs: 

U;Q = 0, a0 = 

cu2  =  12, ai = 

LO\ = 60, a2 = 

0 

\0/ 

/1 \ 

-2 

V 0 / 

/ 1 \ 

-6 

V 6 / 

The nontrivial eigenvalue/eigenvector pairs give us the two solutions 

ui(x) — 1 — 2x, 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

and 

ii2{x) = 1 - 6X + 6J;
2
 . 

Comparing these numerical solutions to the analytical solutions 

— J    ,Un{x) = C0S(UX), 

(2.21) 

(2.22) 

(Fig. 2.2), we can see that the shape is not identical. As N increases, the nature of 

the variational technique is such that the frequencies from the variational solution 

converge rapidly to those of the exact solution, despite the inaccuracies in the modes 
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Figure 2.2:   Comparison of one dimensional mode shapes.   Analytical solutions in red, 

solutions from Visscher's algorithm (N = 2, Eqs.( 2.20) and ( 2.21)) in blue. 
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shapes [10]. Notice that the first frequency, wg, is zero. This corresponds to the trans- 

lation of the string with no vibration. As an experiment only measures vibrational 

modes, we can neglect the translational mode. It is apparent now that assuming a 

polynomial solution of order N = 2 is very restrictive, limiting us to N frequencies 

that can be calculated and compared to the experiment. Note that an N— order 

polynomial solution for u{x) has a maximum of N nodes. 

2.2    Three Dimensional Model 

Figure 2.3 shows some exagerated mode shapes for a parallelepiped. Comparing 

these to the modes shapes shown in Fig. 2.2, it is immediately obvious that the 

three dimensional model will be much more complicated. Hamilton's variational 

principle can be used to find the resonance frequencies of a 3-D elastic solid in much 

the same way as for the 1-D case. However, the complexity of the problem rises 

dramatically, especially for non-isotropic systems. Here we state the results and 

equations equivalent to those described in Sec. 2.1. 

We choose a three dimensional polynomial for the variational solution, 

Mi = £ aiX$x, (2-23) 
A 

where 

<j>x = xlymz\ (2.24) 

N>l + m + n, (2.25) 

and A is an index to distiguish between sets of l,m,n. The Lagrangian of Eq. (2.1) 
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Figure 2.3: Examples of three dimensional mode shapes. 

for a three dimensional system then becomes 

./v i,i',X,X' ~ ij,k,l,\,X' 

where c,jw is defined from the generalized Hooke's law [11] 

aij = CijM ekh 

dxj dxi 
dV,     (2.26) 

and 

Cijkl — Cjikl — C-klij — Cijlki 

(2.27) 

(2.28) 

by symmetry. Thus, only 21 of the 81 components are independent, and cijki is 

commonly rewritten as a 36-component second order tensor c,j. Also by symmetry, 

Oij and Eki have only six independent components, and are commonly rewritten as 

6-component first order tensors. 
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Defining 

E\i\'i' = Sa' [ $xP$x dV 
■IV 

(2.29) 

and 

Fxa'i' = z 
-,          t d$xd<&x ... 
Lc^'/ /   o . ~ , dV, (2.30) 

JJ' J     3 

we can write the lagrangian in tensor form, 

L = -w2arEa-iaTra, (2.31) 

analogous to Eq. (2.12) for the 1-D case, but more difficult to perform as a is now a 

rank 3 tensor with ./V3 elements. This then leads to an eigenvalue equation 

u;2Ea = Ta. (2.32) 

Solving this system as N —> oo would give an exact solution, but is analytically 

impossible. Thus a numerical solution must be found. To allow for a realistic com- 

putational time we have limited our numerical solution to a polynomial solution of 

the order iV = 10. 

For any nontrivial N, the diagonalization of Eq. (2.32) is performed numer- 

ically. As in the one dimensional case, the variationally determined frequencies in- 

crease in accuracy as the parameter TV increases. However, the computational time 

and memory requirements also increase with N. We have limited the order of our 

three-dimensional polynomial to N = 10. Figure 2.4 [12] shows a comparison of 

the number of resonance frequencies that may be determined accurately for N = 10 

and iV = 12. The sample is SrTiOß and of cubic symmetry (3 independent elastic 

constants). The numerically derived frequencies are compared to the experimentally 
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Figure 2.4: Comparison of numerical method for number of frequencies predicted by N 

10 and N = 12 to the actual number of observed frequencies. [12] 
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derived frequencies and to the standard f2 result. Note that up to 50 frequencies may 

be fit with the choice N = 10. Since, in general, we cannot distinguish more than 20 

resonances from our rock samples, we are comfortable with N = 10. 

2.3    Levenberg-Marquardt Minimization 

In Sec. 2.2 we describe a forward calculation of resonance frequencies. After the 

resonance frequencies have been calculated for a given initial guess of dju (r from 

Sec. 2.1), the RUS inversion algorithm compares the calculated values to those mea- 

sured experimentally. If the calculated frequencies do not match the experimental 

values, a new elastic tensor is chosen using a Levenberg-Marquardt minimization 

of x2, where \2 is defined as the rms error between the calculated and measured 

frequencies, 
M 

X2 = Uf? - ff\\ (2-33) 

M is the number of frequencies used for the fit, /* is the ith experimentally measured 

frequency, and ff is the 7th calculated frequency. These three steps: calculation of 

resonances from an elastic tensor, comparison of calculated and experimental reso- 

nances, and a new choice of elastic tensor, are repeated until a fit is achieved. What 

is defined as a good match or fit will be discussed in Ch. 3. Here we will discuss some 

of the details of the minimization technique. 

The Levenberg-Marquardt minimization technique [13] combines a steepest 

decents minimization with the Newtonian minimization method. This allows a rapid 

convergence upon the absolute minimum of the \2 surface.   The steepest descents 
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method is used far from the minimum in \2- The Levenberg-Marquardt algorithm 

switches to the Newtonian method continuously as the minimum is approached. \2 

is a dimensionless quantity, and is looked upon throughout this thesis as a surface in 

Cn, c44 space. This analogy, however, does not hold as the modeled material deviates 

from isotropy, i.e., as more independent elastic constants are introduced. 

The general procedure for using the Visscher et al [9] variational technique 

and the Levenberg-Marquardt method to determine elastic constants of a material is 

as follows: 

• Guess initial values of elastic constants (Cs„ess). 

• Compute resonance frequencies for a sample characterized by {Cguess) and the 

geometry of the experimental sample. 

• Compute x2(Cguesa, Cexp)iox the model frequencies. 

• Increment Cgness and repeat the procedure above until x2(Cguess, Cexp) is min- 

imized. 

In this procedure, the increment size of Cguess can vary, and depends on the value of 

X2{Cguess, Cexp). This allows for a rapid and accurate convergence upon the minimum 

even when starting at a point far from the absolute minimum. It should be noted, 

however, that, due to the potential complexity of the x2 surface, relative or false 

minima may exist. For this reason extreme differences in the initial guess and the 

absolute minimum, may cause a false minimum to be found and result in erroneous 

results; thus the more educated we can be when making our initial guess at the elastic 
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constants, the more certain we can be that we have found the absolute minimum [13]. 

Another important feature of the Levenberg-Marquardt method, is that it 

provides information about the surrounding surface of \2 about the minimum That 

is to say, that the curvature or sharpness of the minimum is known when the minimum 

is found. This sharpness can differ in orders of magnitude from sample to sample, 

which allows us to not only find the elastic constants, but to assess the degree of 

certainty in our results. A very shallow minimum implies there is room for error, 

while a sharp minimum makes us much more confident in our results. This is an 

important key when evaluating the quality of our experimental results, and will be 

discussed more in Sec. 3.6. 



20 

Chapter 3 

MODELING AND EXPERIMENTAL 

DEVELOPMENT 

In this section we will apply the methods described in Chap. 2 to model and 

analyze experiments performed on macroscopic samples of inhomogeneous rock. The 

assumptions inherent in the analysis described in Chap. 2 will be discussed, as well 

as ways in which to maximize the success of RUS on samples whose properties do not 

satisfy these assumptions. 

The experimental system is shown in Fig. 3.1. The sample, a rectangular 

parallelepiped, is held delicately between two piezoelectric transducers, one acting as 

the source and the other as a detector. The source is driven at constant voltage and 

the frequency is swept through the low-lying resonances. The measured resonance 

frequencies are the input to the iterative inversion algorithm discussed in Chap. 2. 

The algorithm finds the best match between the data (typically 10 to 20 resonance 
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Figure 3.1: Diagram of experimental set-up. The control hardware and software are com- 

mercial packages from Dynamic Resonance Systems, Inc. 

frequencies) and a set of resonances generated from a model in which the parameters 

are the components of the elastic tensor. 

The numerical inversion is performed by software provided by Dynamic Res- 

onance Systems (DBS), a commercial provider of RUS measurement systems, and is 

based on the Visscher et al. [9] variational technique. The analysis software employs a 

model of the resonant elastic system that (a) has free boundaries, (b) is spatially ho- 

mogeneous, and (c) is a rectangular parallelepiped. Departure of a sample from these 

.three conditions can introduce shifts in the experimental resonances, and thus will 

introduce error in the derived elastic moduli. Conditions (a), (b), and (c), how well 

our samples conform to them, and estimates of the induced error due to nonconfor- 

mity are discussed below. In Appendix A we sketch a perturbation theory calculation 

that we use to assess the consequences of shape departures from a parallelpiped. 

Rock and similar type samples, e.g., concrete, have relatively high acoustic 
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attenuation, or low Q. Thus several very practical issues arise, (d) How do we cause 

resonance peaks to separate enough to be distinguishable? (e) How do we acquire 

the most information out of the first measurable resonance peaks, i.e., how do we 

maximize the dependence of those modes on the elastic constants of interest? (f) 

To what extent can anisotropy be recognized and determined for an inhomogeneous 

sample? I will show here, that by altering the sample geometry, while maintaining a 

rectangular parallelepiped shape, these practical issues can be addressed. 

3.1    Free boundaries 

The variational technique used in the analysis [9] is based on the recognition that 

the displacement vectors satisfying the elastic wave equation with free boundaries on 

the sample surface, also make the elastic Lagrangian of the sample stationary. To 

approximate free boundaries in the experiment, the source and detector are most 

often placed at vertices of the parallelpiped, delicately supporting the sample. The 

sample is nearly free standing. Holding the sample at vertices has the further advan- 

tage of keeping the transducers away from the expected node lines of the resonant 

modes. When the full resonance spectrum is complicated, transducers may be placed 

purposely at expected nodes, such as the center of a face, to temporarily simplify the 

spectrum. Using transducers for support limits the sample size. Our transducers are 

PZT-5 piezoelectric pinducers. We have limited our samples to less than 50 cm3, and 

150 g. 
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3.2    Inbomogenci t.y 

The elastic and acoustic response of a. consolidated nuitovirl is primarily determined 

1)V a macroscopic average over the bonds between const if ncnis. rather thai: l>y (lie 

elastic properties of the constiiucnts themselves. For example. Hie clastic properties 

of sandstone. ;i quartz conglomerate, are more a function of grain-to-grain bond 

properties than of Si( b properties. We are interested in Hie elastic properties of 

consolidated materials, i.e.. materials that aie inherently inhoinogenooiis. Wo wont 

to U<- abb (;. regard these materials as homogeneous. We adopt the rule- of thumb 

that an in homogeneous material looks homogeneous to a, propagating wave when the 

wavelength of the wave is much »renter than the l^u^th sc al" oj the inhoiuogeneity. 

A simple calculation for ■■> one-dimensional system whh free boundaries results 

in resonance wavelengths \ -- '.?//</. where / is Urn Ivtiglh of the sample and i> is an 

intern.' number of mules. /Wamcnr. i.h.at we need the first. <en resonance frequencies 

lo aeeuraiclv del ermine two HnsU( e,,ustauls with KUS [51. we want the maximum 

sirm of an mhomogoneüy .'; < /,-,i,./r3. where /,.,;,, is the length of the smallest side of 

the sample This estimate is very conservative, since if is highly unlikely that all of 

the firs! ten resonant modes in a three-dimensional sample will have nodes along a 

single direction. We use the ratio £/l 'X (visible grain size)/(length), fo characterize 

the inhoiuogeneity ol our samples. 
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3.3    Sample geometry, the figure of the sample 

Samples of consolidated materials are difficult to machine without chipping, and often 

do not have perfectly parallel sides. How ideal must the figure of a sample be? This 

question can be examined using the perturbation treatment of the elasticity problem 

sketched in Appendix A. To simulate the effect of an error in the figure of a sample, a 

localized mass is carried around the perimeter of the sample, and the frequency shift 

caused by this mass is calculated. The frequency shift for mode n is given by 

!^ä«2^ = (ttBM«»>, (3-1) 

where un and un are the eigenmodes and eigenfrequencies of a perfectly shaped sam- 

ple, andöp is the localized mass perturbation being carried around the sample. In 

Fig. 3.2, the average frequency shift of the first 20 resonances, 

1 tF = m £ {—). 
n-l V •'"  / 

(3-2) 

where N=20, is shown as a function of the perturbation placement. The perturbation 

is carried along the sample edge and into the sample interior as shown in the inset 

in the figure. When the perturbation is at an interior point it is essentially a 1% 

mass distortion, when it is along the perimeter it is a 1% distortion of the figure. 

Distortions in the figure of the sample are much more important than equivalent 

mass distortions in the sample interior. A 1% chip out of the corner of a sample can 

produce a 1% change in the frequency. A 1% mass distortion at the sample center 

produces less than 0.2% change in frequency. 

Given the number of other contributors to error in RUS measurements on 
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Figure 3.2: Frequency shift as a function of the perturbation placement. 

consolidated materials, these contributions to error are rather small. This conclusion 

was confirmed empirically by making RUS measurements on samples before and after 

chipping, and on various samples of the same size. 

3.4    Distinct resonance peaks 

Consolidated materials a.re often characterized by a low quality factor Q, i.e., a high 

attenuation. At fixed amplitude low Q materials have fewer observable resonance 

frequencies than high Q materials. Additionally the broader resonance peaks of low Q 

materials overlap nearby peaks and complicate peak picking. However, the geometry 

of a sample sets the frequency difference between peaks. For example, a sample that 

is a cube of an isotropic material has a three-fold degeneracy in all of its resonance 
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frequencies. Thus, we can use geometry to minimize peak overlap due to a low Q. 

In Fig. 3.3, calculated resonance frequencies are plotted for a parallelepiped 

sample as a function of the aspect ratio, c/a. The volume of the sample is fixed, 

a x b x c = 4.8 cm3, and b = 1.1a. Aspect ratios greater than one correspond to 

rod-like samples and are characterized by the number c/a in Fig. 3.3. Aspect ratios 

less than one correspond to plate-like samples and are characterized by the number 

-a/c in Fig. 3.3. A homogeneous, isotropic sample with elastic constants appropriate 

to basalt was assumed. As the aspect ratio is increased, the low lying modes separate. 

For example, at b = 1.1a, c/a = 4, we expect to be able to pick out fourteen distinct 

resonances before mode overlap becomes a serious problem for a RUS experiment. 

Increasing the aspect ratio further might allow us to pick out even more dis- 

tinct peaks. However, the RUS inversion code uses a fixed order polynomial to vari- 

ationally fit modes [9]. As one side of a sample becomes disproportionately large, a 

disproportionate number of nodes in the normal modes will be in that direction, and 

the inversion code will lose fitting accuracy in that direction. We have chosen to keep 

samples at 1/4 < c/a < 4 (-4 to 4 in Fig. 3.3). 

3.5    en dependence 

A rule of thumb [5] establishing the number of resonances necessary to find elastic 

constants, is that five resonance frequencies are needed to accurately determine each 

independent elastic constant. Thus, for an isotropic material described by two elastic 

constants, we need to experimentally determine the first ten resonance frequencies. 
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Figure 3.3: Calculated resonance frequencies as a function of aspect ratio. The sample is 

at a constant volume of 4.8 cc; b = 1.1a, and the aspect ratio is c/a on the right side, -a/c 

on the left side. The elastic constants are en = 86.6 GPa and c44 = 31.9 GPa. 
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Certainly the confidence with which the elastic constants can be determined is influ- 

enced by the involvement of each elastic constant in the first ten modes of the sample. 

It is important to mention that the first ten resonance peaks lie within a 100 kHz 

range.   Due to this relatively small frequency range, the effects of dispersion have 

been ignored. 

Since cn « 2c44, we expect low frequency modes to be more highly dependent 

on c44 than cn (in analogy to the frequencies of the modes of a soft spring versus a stiff 

spring network). Indeed, for a cubic shaped sample of basalt, the first eight resonance 

frequencies have a total dependence on cu of less than 15%. That is, most low lying 

modes are shear modes, involving very little compression. However, the geometry of 

the sample influences cn dependence in the resonance modes. Plate-like and rod- 

like samples will have low-lying bending or flexural modes that are compressional in 

nature. 

In Fig. 3.4, the cn dependence of the first ten resonant modes of a paral- 

lelepiped sample are shown as a function of the ratio of the longest side to the shortest 

side of the sample c/a. Positive aspect ratios denote rod-like samples (the aspect ratio 

is c/a on the right side); negative aspect ratios denote plate-like samples (the aspect 

ratio is -a/c on the left side). These dependencies are found by taking the deriva- 

tive of the frequency with respect to each of the moduli. A homogeneous, isotropic 

sample with elastic constants appropriate to basalt was assumed. As the aspect ratio 

is increased, the C\\ dependence increases. For example, for a sample with c/a = 4, 

seven of the first ten modes have a cn dependence over 20%, as opposed to only two 
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Figure 3.4: cn dependence as a function of aspect ratio. The sample is at a constant 

volume of 4.8 cc; b = 1.1a, and the aspect ratio is c/a, on the right side, -a/c on the left 

side. The elastic constants are c\\ = 86.6 Gpa and C44 = 31.9 GPa. 
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modes for c/a = 1. 

3.6    Anisotropy 

If isotropic symmetry is broken in a single direction, the sample has hexagonal sym- 

metry and is called transversely isotropic. Many consolidated materials, such as 

sedimentary rock and laminar systems, are transversely isotropic. Hexagonal symme- 

try is described by five independent elastic constants (i.e., cn, C33, ci3, c44, c66). Thus, 

in order to determine hexagonal symmetry using RUS, we might expect to need 25 

resonance frequencies. This is a prohibitively large number for low Q samples. Do we 

actually need this many? Suppose we have 10 measured resonances. Can we detect 

anisotropy with these modes? The following is a test of the sensitivity of RUS to 

anisotropy. 

Consider the elastic system described by the elastic tensor 

/c„    c12    c13     0      0      0 \ 

c-12    en    C13     0      0      0 

M 

en C13 C33 0 0 0 

0 0 0 C44 0 0 

0 0 0 0  ' C44 0 

V 0 0 0 0 0 c66/ 

(3.3) 
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(3-4) 

where 

cn = (l+e)C0, 

ci2-0.4(l-2e)C0l 

c13 = 0.4(l+e)Co, 

C33 = (l-2e)C0, 

C44 = 0.3(l-1.5e)C7o, 

c66 = 0.3 (1 + 3e) Co, 

0 < e < 0.25, Co = 1011 dynes/cm2, and p0 = 1 gm/cm3. As £ varies from 0 to 0.25 

the elastic tensor varies from isotropic 

/ 1     0.4   0.4     0      0      0 \ 

0.4     1     0.4     0      0      0 

M(0) = C0 

0.4   0.4     1      0      0      0 

0       0       0     0.3     0       0 

0       0       0       0     0.3     0 

\ 0      0      0      0      0     0.3/ 

(3.5) 

to hexagonal 

/1.25    0.2    0.5        0 0 

0.2     1.25   0.5        0 0 

0.5     0.5    0.5        0 0 
Af (0.25) = Co 

0       0     0.1875        0 

0 0        0 

0    \ 

0 

0 

0        0.1875       0 

(3-6) 

\   0        0       0 0 0       0.525/ 

These numbers have been chosen so that the average properties of the tensor are the 

same while the system is shifting from isotropic to hexagonal with the change in e. 
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By average, we mean that the first three diagonal components (cn, c22, c33) average to 

C0; the three off-diagonal elements (ci2,ci3,c23) average to 0.4C0; and the last three 

diagonal elements (c44, c55, c66) average to 0.3C0, regardless of the valne of e.   For 

e = 0.25 the elastic matrix is approximately that of zinc [14]. 

We proceed as follows: 

1. Choose values of c/a, and e. 

2. Calculate the lowest 10 frequencies, gx,..., .910, using the elastic tensor in Eqs. (3.3) 

and   (3.4). e/i,..., #10 are the frequencies of the model system. 

3. Assume the model system is isotropic and the frequencies g\,...,g\Q are the 

measured frequencies of the lowest 10 modes, the data. 

4. Fit the model system data with an isotropic model, i.e., with cu and c44. 

In Fig. 3.5 the frequency error is shown 

'-** n=l 

as a function of e, where TV = 10, for -4(1/4) < c/a < 4, and c/a is the ratio of 

the longest (c) to shortest (a) sides. Aspect ratios less than one are represented as 

negative reciprocals, e.g., c/a = 1/4 is represented as c/a = -4. For a c/a ratio of 4 

we see that the error due to attempting an isotropic fit to data from an anisotropic 

sample remains less than 1% for e < 0.22. If we choose 1% error as the threshold 

between a good fit and a bad fit, we do not have enough information about the elastic 

properties of the system to recognize that it is not isotropic if we are given only the 
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Figure 3.5: Frequency error vs. e for c/a =-4, -2, 1, 2, 3, 4. 

first, 10 modes.   In practice the choice of a suitable threshold must be empirically 

determined. 

The c/a = 2 results in Fig. 3.5 seems to imply that this aspect ratio provides 

the best detection of anisotropy. Figures 3.6 and 3.7 show a measure of the sharpness 

of the minimum in F, through the use of error elipses, for two of the solutions in 

Jflh Fig. 3.5 (c/a=4, c/a=2). In these figures the (cn/c^c^/clu ) Pair for which tbe 

frequency error is a minimum, is plotted (black dot) for 0 < e < 0.1 where cn = C0 

and c{$ = 0.3C0. Anisotropy is increasing from the top right to the lower left. The 

black dots are the result of an isotropic fit. The red ellipses represent a measure of 

the uncertainty in the isotropic fits (the sharpness of the corresponding minima). It 

follows that for c/a = 4, the isotropic fit is very accurately determined when cn/c^ 

approaches 1, while the uncertainty grows as we decrease that ratio (increase e). From 
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Figure 3.6: A measure of the quality of fit (sharpness of the minimum) for c/a=4 and an 

increasing variation from isotropy. 

0.95 

Fig. 3.6 we see that for aspect ratio 4 the minimum in the frequency error is sharply 

defined. Contrast this to Fig. 3.7 for aspect ratio 2. For this case the frequency error 

is not at all sharply defined. With aspect ratio 2 the frequency error is neither small 

(note it is less than 1% for e < 0.06) nor sharply determined. 

At e = 0.09 (Fig. 3.8) there are 6 points and there associated error ellipses 

labeled 5, 10, 15, 20, 25, and 30. These points represent the frequency error for 

c/a = 4 found for isotropic fits of N = 5,..., 30 anisotropic frequencies. Here we 

are investigating the ability to see anisotropy from an isotropic model, as the number 

of frequencies increases. The differences in the sharpness of the minima (size of the 

error ellipses) give a very good indication of how the ability to discriminate increases 

with an increasing number of frequencies. We argue that for N > 15 one begins to 
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Figure 3.7: A measure of the quality of fit (sharpness of the minimum) for c/a=2 and an 
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Figure 3.8: A measure of the quality of fit (sharpness of the minimum) for c/a=4, e=0.09 

and a varying number of measured resonance frequencies (/ = 5, 10, 15, 20, 25, 30 as 

lableled). 
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see errors great enough to indicate that the sample is not isotropic. 

Thus RUS is capable of distinguishing a deviation from isotropy, given a suf- 

ficient number of resonance frequencies. A sample with c/a = 2, displays large errors 

at small anisotropic deviations, as well as very shallow minima in the frequency fits, 

thus giving us an idea of the goodness of fit, or rather that they don't fit. For higher 

Q materials, the best method of detecting anisotropy may be to simply measure more 

peaks, however, when the number of resonance frequencies is limited to 10, the sample 

size should have c/a = 2 (assuming b = 1.1a) to have the greatest sensitivity to the 

anisotropy. 
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Chapter 4 

EXPERIMENTAL RESULTS AND 

CONCLUSIONS 

The previous chapters have provided a foundation with which we can now 

investigate real samples. Using the analytical method described in Chap. 2, and 

the techniques for optimizing our results discussed in Chap. 3, we have performed 

RUS experiments on a variety of rock types, and sizes. A case study of a sample of 

black gabbro is detailed in Appendix B, documenting the process of applying RUS to 

inhomogeneous samples. 

4.1    Results 

RUS experiments and analysis were performed on samples of berkeley blue 

granite, pink quartzite, and black gabbro in sample set 1 (Table 4.1). Figure 4.1 

provides a pictoral representaion of sample set 1. Sample set 2 consists of an assort- 
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r fable 4 LI: Sampl e Set 1 

Rock Type ID a 

(cm) 

b/a c/a £/a Q 
(GPa) 

c44 

(GPa) 

%error 

Black Gabbro BG-1 2.8 1.1 1.4 0.23 350 96 36 0.557 

Black Gabbro BG-2 2.3 1.1 2.6 0.28 350 97 36 0.703 

Black Gabbro BG-3 1.0 1.1 4.0 0.32 350 107 35 0.377 

Black Gabbro BG-4 1.3 1.1 4.0 0.24 350 106 35 0.377 

Black Gabbro BG-5 1.6 1.1 4.0 0.31 350 119 35 0.489 

Black Gabbro BG-6 2.0 1.1 4.0 0.21 350 107 36 0.279 

Pink Quartzite PQ-1 2.0 1.1 4.0 1.68 250 69.6 35.1 1.271 

Berkeley Blue Granite BB-1 2.0 1.1 4.0 0.20 230 30.7 12.3 13.28 

ment of basalt, sierra white granite, and black gabbro. Isotropy was assumed for all 

samples. The results are tabulated in order of increasing aspect ratio c/a. To crudely 

determine the size of inhomogeneity £ in each sample, the largest surface structure 

(blob) on each sample was measured. In sample set 1 cases, the first ten resonance 

frequencies were used for the fit. The average Q is determined from Q = LO/ALJ aver- 

aged over the first ten resonances, where u is the resonance frequency, and Au; is the 

full-width at half-maximum of the resonance intensity. Note that the RMS percent 

error is strongly dependent on c/a, a/£, and Q. High values of these parameters lead 

to better fits between measured and calculated resonances. 

Notice that for all black gabbro samples in sample set 1, the shear modulus 

(c44) is consistently 35-36 GPa. This agreement between samples indicates that the 

measured resonances have an adequate dependence on c44. However, there is a marked 

difference between the compressive modulus (cu) for samples having an aspect ratio 

c/a = 4 and those for which c/a < 4. The error for the samples with c/a < 4 is also 

greater than for the c/a = 4 samples. This indicates that the lack of cu dependence 
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Figure 4.1: Pictoral representation of sample set 1. 

Table 4.2: Sampl eSet 2 

Rock Type ID a 

(cm) 

b/a c/a Ha Q Cll 

(GPa) 

c44 

(GPa) 

%error 

Sierra White Granite SW-1 3.7 1.1 1.5 0.18 145 37.6 18.7 1.238 

Sierra White Granite SW-2 2.8 1.1 1.6 0.24 140 43.2 18.6 2.023 

Sierra White Granite SW-3 1.0 1.25 3.3 0.46 150 20.8 21.3 17.29 

Sierra White Granite SW-4 1.7 1.2 4.0 0.17 140 37.5 19.1 0.630 

Basalt B-l 2.1 1.1 1.5 0.29 275 88.1 31.3 0.632 

Basalt B-2 2.7 1.0 1.7 0.14 240 88.4 31.7 0.632 

Basalt B-3 2.8 1.1 2.0 0.04 255 87.3 31.6 0.709 

Basalt B-4 1.7 1.1 4.0 0.06 335 87.2 31.5 0.313 
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in the low-lying modes for the more compact samples is effecting the final result, as we 

expected from our modeling in Sec. 3.5. Sample SW-2 (Table 4.2) also demonstrates 

this phenomena as is shown from the larger fit, error and the slightly higher value for 

cu compared to the cn value of samples SW-1 and SW-4. 

Sample set 1 also illustrates the effects of decreasing Q. The fits for samples 

BB-1 and PQ-1 (low Q) have a substantially larger % error than the BG sample 

fits (high Q). It is interesting to note, however, that while the sample BB-1 fit 

has a 13% error, the commonly accepted values for cn and c44 are 30 GPa and 13 

GPa, respectively. Thus even though the fitting error is high, the moduli determined 

from the fit are quite accurate. It is important to remember that results from the 

RUS inversion are the best possible answers for the given data. The % error is an 

uncertainty level, not an a measure of the difference between real and determined 

values of the moduli. 

In sample set 2, we have a random distribution of aspect ratios. Here we 

can see similar results as for sample set 1. As for the black gabbro samples above, 

both Sierra white granite and basalt give results with lower percent error for samples 

having an aspect ratio c/a = 4. Also we again see close agreement in the shear 

moduhis between samples of the same material. 

Sample SW-3 is an interesting sample in that it is the only SW sample that 

exhibits a high percent error, and whose moduli deviate from the other SW samples. 

This is not surprising as we look at the size of the inhomogeneity in the sample. In 

Sec. 3.2 we stated that the relative size of the inhomogeneities (£/a) cannot exceed 
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1/5 (0.2). Sample SW-3 has a £/a value of 0.46. more than twice that of what should 

be allowed. In this sample inhomogeneity prevents us from determining the average 

elastic moduli. The value for £/a given in Sec. 3.2 is actually a conservative value, as 

the model used was one-dimensional. In a three dimensional elastic solid, the first ten 

resonances will not all be along the same dimension, and thus a larger inhomogeneity 

could be tolerated. This would explain why the BG samples all exhibit a low % error 

yet have £/a values slightly above 0.2. 

4.2    Conclusions 

The modeling in Chap. 3 and the results shown in Tables 4.1 and 4.2 indi- 

cate that RUS is a viable technique for characterizing the average elastic behavior 

of inhomogeneous materials. Although larger RMS errors can be expected for inho- 

mogeneous materials than those acceptable in the single crystal business (< 0.5 % 

[5]), our results are generally close for different samples of the same material, and 

consistent with accepted values [15]. 

For RUS on rock samples to be a viable technique, it must be developed further, 

specifically to the needs of the field of geophysics. For example, we need to develop 

RUS for cylindrical sample geometry, so that it is capable of accepting a standard core 

sample. The symmetry of cylinders poses new problems that will be considered in the 

future. Also we plan to take a more in-depth look at the possibility of detecting and 

analyzing anisotropic systems. Finally we plan to develop an environmental control 

chamber inside which the RUS experiment can be conducted. The chamber will allow 
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us to introduce two new variables to the experiment, temperature and water vapor 

pressure. The chamber design is currently that of a sealed vacuum oven in which we 

can easily achieve 250°C (423 K), and enclose standard saturation salts. 

With these new additions to the work that has been completed here, we expect 

to develop a new use for RUS in geophysics. We will be able to explore the elastic 

responses of materials in the earth's crust under various temperature and saturation 

conditions. 
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Appendix A 

PERTURBATION THEORY 

The elastic energy of a solid body, in steady state at frequency u, is described 

by the Lagrangian 

- / rfx m   -M&S - j^Mgj-äd , (AD 

where u is the displacement vector at postition x, CijM is the elastic tensor, p the mass 

density, repeated indices are summed over the cartesian coordinates, and (j) describes 

the extent or figure of the sample, 

1    x inside the sample 
<Kx) (A.2) 

0   x outside the sample 

Equation (A.l) is quite general, allowing for (1) an arbitrary sample figure 0(x) (2) 

a nonuniform density p(x), and (3) a non uniform elastic tensor c,jW(x). 

The equation of motion for the normal modes is fcmnd by varying L with 

respect to w,,:. If the traction on the surfaces defined by 0(x) vanishes, w,: satisfies a 
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wave equation in the form 

*^^h<)=» (A-3) 

for x inside of the sample. The condition that the traction on the surfaces vanish is 

enforced by holding the sample so that it is effectively free standing. 

The equation of motion for ?/,, Eq. (A.3), can be cast in the form of a variational 

problem [16]. That is, the quantity u;2[u,-], where 

U N =       Jdx*(x)p(x)«?      ' (A"4) 

must be stationary subject to arbitrary variations of w, consistent with traction free 

boundaries. Using this form for the normal mode frequencies it is possible to make a 

systematic study of the consequences of change in 0(x), p(x), and cijk,(x). Assume 

the ideal sample is a rectangular parallelepiped specified by </>0, has uniform density 

po, and has uniform elastic constants c?jW. Then variations in these quantities are 

given by 6<fi{x) = </>(x) - fa, 8p{x) = p(x) - po and 8cijk,{x) = cijki(x) - cj-w. To first 

order in 6<j), 8p, and 8c we have 

2      N0 

Do 

6NC     6N+     8DP     8D< 

No       No       Do       Do 
(A.5) 

where 

n     r ,        duj duk , K ns 

N* = 4ml«***e^^ (A-6) 

DQ = po fdxfau?, (A.7) 

8NC = [ dx 0o (cy„(x) - <%„) |^ (A.8) 

fiJV^^/AWx)-*,)^, (A.9) 
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ÖDP = j dx </>o (p(x) - po)vl (A.10) 

6D* = po [dx (0(x) - 0„) «?. (A.ll) 

Using the variational technique of Visscher et al. we can find the eigenvalues 

o;20 = No/Do and eigenfunctions w°„ = Vv(x) associated with the ideal sample. Thus 

the lowest order contribution to the frequency shift due to a perturbation is 

«% - u£o = b_K     oNf _ SDp^ _ 61^ (AU) 

ulo No       N0       Do       Do 

where M,: = Vv(x). For the example of an inhomogeneous mass density we would have 

<*>l ~ ulo _    / rfx ^o (p(x) ~ Po)\Mx)F 
UJ'IO po.fdx(j)o |V^(x)|2 

where 
•>0      fJY/i    9Vv(x)9Vv(x) c7.jfc/./ «x0o   ar;.     a,.; 

(A.13) 

w?.„ =   '"'',. ':   ,T',  r'   • (A.14) v'0 po./'rfx0o|Vv(x)|2     ' 

Equation (A.13) is used in Sec. 3.3 for the case of a mass defect to illustrate the 

consequences of a mass inhomogeneity on resonant mode frequencies. 
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Appendix B 

CASE STUDY 

In this appendix we will document a complete experiment from the forward calculation 

to final result. We chose to work with black gabbro for its relatively high homogeneity 

and Q. Figures B.l and B.2 demonstrate why high Q's are important. In Fig. B.l, 

a sample spectrum for stainless steel {Q > 1000) is shown; in Fig. B.2 a sample 

spectrum of Berea sandstone (Q « 50) is shown. The spectrum in Fig. B.l shows 

the resonance frequencies very clearly. The first 15 resonances are very easy to pick. 

In contrast, the spectrum given in Fig. B.2 contains what appears to be a lot of 

noise. Consequently the first 15 resonances are difficult to discern. Most rocks have 

resonance spectra that look more like Berea sandstone than stainless steel. In this 

study we have limited ourselves to high Q rocks (Q > 150). 

The particular sample of Black Gabbro analyzed in this appendix is the fourth 

black gabbro sample characterized in Chap. 4, Table 4.1. This sample, designated BG- 



47 

<u 

E 
< 

150 200 250 300 
Frequency (kHz) 

Figure B.l: Example of a spectrum for a stainless steel. Note the sharp peaks (high Q). 

4, has dimensions 1.29 x 1.40 x 5.01 cm3, aspect ratios of c/a = 4 and b/a = 1.1, mass 

26.18 g, and largest observable inhomogeneity £ = 0.47 cm. The dimensions, mass, 

and an initial guess for the elastic constants (cn = 86.6 GPa, c44 = 31.9 GPa) are the 

input for a numerical forward calculation of resonance frequencies. This input file is 

shown in Fig. B.3. The output from the forward calculation (also shown in Fig. B.3) 

displays the first 15 resonance frequencies in MHz, and their fractional dependence 

upon the two independent moduli (df/d(moduli) columns, cn, cu respectively). Note 

that the first ten resonances are well separated and have a strong dependence on the 

compressional modulus cn This is largely due to our choice of aspect ratio c/a = 4, 

as suggested by our numerical studies. 

This output file provides an initial range of frequencies to guide the experiment. 
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.2: Example of a spectrum for Berea sandstone. Note the broad overlapping peaks 
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Based on the results in Fig. B.3 the first frequency scan (Fig. B.4) was performed over 

the range 20-100 kHz. This range was expected to contain the first ten resonances and 

still allow for a shift in those resonances from the predicted values. The first broad 

sweep of frequencies reveals what appears to be nine of the ten frequencies that 

the forward calculation led us to expect. To accurately determine the experimental 

resonance frequencies, we narrowed successive scans to the regions labeled A-G on 

Fig. B.4. 

Accurate determination of the lowest frequency is very important, as the first 

resonant mode depends heavily on cu (see Fig. B.3). Since cn dependence in resonant 

modes is often difficult to achieve, but is necessary for accurate determination of cn, 

it is essential that we find the first resonance of the sample. Missing peaks can be 

accounted for in the analysis with null entries, but influence the accuracy of our 

experiment. In Fig. B.5 (region A in Fig. B.4) we see that what appeared to be a 

single peak is actually two closely spaced peaks. Adjusting the phase of the scan 

(seen in the upper left window of each scan) brings the peaks out more prominently 

for selection. The selected resonances occur at 24.6 kHz, 26.0 kHz. These values 

are shifted from the expected values (22.8 kHz, 24.2 kHz), indicating that one or 

more of the values entered in the forward calculation are incorrect. Re-measuring 

and weighing the sample, we found no error in the measurements. Consequently we 

assume that otir initial guess of elastic constants is not accurate. 

Scanning regions A-G in turn (Figs. B.5- B.ll), pinpointed each of the ex- 

pected resonance frequencies without confusion due to artifacts or induced noise. In 
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Forward Calculation Input File: 

BG-4 
2   3   10   15   26.18   1.00   1 

.866   .319 
5.01   1.29   1.4 

Resulting Output File: 

BG-4 
free moduli are  ell, c44 
using 10 order polynomials   mass= 26.1800 gm  rho= 2.893 gm/cc 

n     fex      fr    %err wt  k i df/d (moduli) 
1 1.000000 0.022814-97.72 1.00 7 2 0.35 0.65 
2 1.000000 0.024163-97.58 1.00 6 2 0.34 0.66 
3 1.000000 0.030326-96.97 1.00 4 1 0.00 1.00 
4 1.000000 0.050743-94.93 1.00 3 2 0.29 0.71 
5 1.000000 0.051376-94.86 1.00 5 1 0.36 0.64 
6 1.000000 0.052610-94.74 1.00 2 2 0.28 0.72 
7 1.000000 0.060601-93.94 1.00 8 2 0.00 1.00 
8 1.000000 0.081655-91.83 1.00 7 3 0.24 0.76 
9 1.000000 0.083553-91.64 1.00 6 3 0.23 0.77 

10 1.000000 0.090749-90.93 1.00 4 2 0.00 1.00 
11 1.000000 0.101677-89.83 1.00 1 2 0.27 0.73 
12 1.000000 0.109945-89.01 1.00 2 3 0.13 0.87 
13 1.000000 0.110721-88.93 1.00 3 3 0.16 0.84 
14 1.000000 0.121978-87.80 1.00 8 3 0.01 0.99 
15 1.000000 0.131907-86.81 1.00 4 3 0.06 0.94 

Bulk Modulus=     0.441 

ell    c22    c33    c23    cl3    cl2    c44    c55    c66 

0.8660 0.8660 0.8660 0.2280 0.2280 0.2280 0.3190 0.3190 0.3190 

dl       d2       d3 
5.01000  1.29000  1.40000 

Figure B.3: Input file for sample BG-4, forward calculation, and the resulting output file. 
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Figure B.4: Initial scan of sample BG-4. Scanned over the range 20 - 100 kHz in order to 

detect the first ten resonance frequencies seen in Fig. B.3. 
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Figure B.5:  Scan of region A for sample BG-4. Decreased scanning range to resolve the 

resonance peak. 
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Figure B.6: Artifact scan of sample BG-4, region E. No resonance peaks in this range. 

Area scanned to illustrate the obvious difference to "peak" shaped artifacts and the actual 

peaks illustrated in the other scans. 
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Figure B.7: Sample BG-4, scan of region B. 
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Figure B.8: Sample BG-4, scan of region C. 
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Figure B.9: Sample BG-4, scan of region D. 

the first scan (Fig. B.4) there appears to be a small deviation from the background 

noise just before 80kHz (region E). A closer scan of this area (Fig. B.6) illustrates 

the difference between a system artifact and resonance. The bumps in region E have 

a much smaller relative amplitude than the resonances in region A (Fig. B.5), and 

also have a more amorphous shape than the well-defined peaks in region A. In ad- 

dition, in subsequent scans, region E changes shape, while resonance frequencies do 

not. This indicates that there is a weak coupling somewhere in the system, yet it is 

easily distiguishable from true resonances in the spectrum. 
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Figure B.10: Sample BG-4, scan of region F. 
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Figure B.ll: Sample BG-4, scan of region G. 

BG-4 
2 3 10 

866 
29 1 
0 . 02 
0 . 02 
0 . 03 

0 
1 

0 
0 
0 
0 
0 

05 
05 
05 
06 
08 

0.08 
0 . 09 

O 26 
O . 319 
.4 5 . 
4621 
6001 
2160 
4135 
5135 
6274 
4016 
6995 
9145 
5878 

.18 11 

01 
0 
O 
O 
0 
O 
0 
O 
O 
0 
O 

024762 
028456 
032331 
049300 
053805 
057833 
064169 
085516 
088649 
094112 

Sample Name 

3rd entry Is polynomial solution order 
5th entry Is sample mass 

Initial Guesses for o11 and o44. respectively 

Dimensions (order Is Irrelevant for Isotropie) 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

00 
00 
00 
00 
00 
00 
00 
00 
00 
00 

1st & 2nd columns are 
experimentally measured frequencies 

3rd column Is a weighting 
parameter for each frequency 

Figure B.12: Input file for sample BG-4, containing experimentally measured frequencies 

from figs. B.4- B.ll. 
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After experimentally measuring the resonance frequencies of our sample, the 

next step is to run the inversion algorithm [8]. Figure B.12 includes the same sample 

information as the input file used for the forward calculation (Fig. B.3) with the 

addition of three columns containing the measured frequencies (columns one and 

two) and a weighting column indicating the confidence level of the measurement 

(0 < weighting value < 1). The final output is shown in Fig. B.13. The information 

provided in the output file includes the measured resonance frequencies, expected 

resonance frequencies, the difference between them (fex, fr, %err columns), the bulk 

modulus (an engineering constant), individual moduli, and the accuracy of the final 

solution (rms error). 
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BG-4 
free moduli are  ell, c44 
free dimensions are   dl, d2, d3 
using 10 order polynomials    mass= 26.1800 gm rho= 2.893 gm/cc 

n f ex fr %err wt k l dl :/d (mc Ddu 

1 0 024621 0 024533 -0 36 1. 1 2 0 28 0 72 

2 0 026001 0 025976 -0 10 1. 7 2 0 28 0 72 

3 0 032160 0 032055 -0 33 1. 4 1 0 00 1 00 

4 0 054135 0 054361 0 42 1. 2 2 0 23 0 77 

5 0 055135 0 055040 -0 17 1. 5 1 0 29 0 71 

6 0 056274 0 056326 0 09 1. 8 2 0 22 0 78 

7 0 064016 0 064057 0 06 1. 3 2 0 00 1 00 

8 0 086995 0 087226 0 27 1. 1 3 0 19 0 81 

9 0 089145 0 089194 0 05 1. 7 3 0 18 0 82 

10 0 095878 0 095932 0 06 1. 4 2 0 00 1 00 

Bulk Modulus= 0.573 

ell    c22    c33    c23    cl3    cl2    c44    c55    c66 
1.0444 1.0444 1.0444 0.3370 0.3370 0.3370 0.3537 0.3537 0.3537 

dl 
1.29241 

d2 
1.40270 

d3 
4.99105 

loop#10  rms error=  0.2319 %, changed by 

length of gradient vector=  0.194379  blamb= 

•0.0000063 % 

0.000000 

eigenvalues 
0.02097 
0.81465 
2 .66530 

34.43162 
9827496.70739 

eigenvectors 
0.97 0.25-0.04-0.06 0.00 
0.05-0.43 0.00-0.90 0.00 
-0.03 0.20 0.65-0.10-0.72 
-0.04 0.02-0.75-0.01-0.67 
0.24-0.85 0.13 0.41-0.19 

chisquare increased 2% by the following % changes in 
independent parameters 

0.94  0.15 -0.05 -0.05  0.10 
0.04 -0.20  0.05  0.00 -0.06 
0.00  0.00  0.09-0.10  0.00 

Figure B.13: Final output file for sample BG-4. 
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